

MEMORIAL

This Proceedings of the First International Conference on Submillimeter Waves and Their Applications is dedicated to our departed friend and colleague

JOHN CHAMBERLAIN

At the time of his death by stroke in October 1974, he was planning the Third Conference to be held in England in the Spring of 1978. John Chamberlain was respected and admired as a pioneer in far infrared Fourier transform spectroscopy. As part of his rich scientific legacy, he has left us the technique of measurement of complex dielectric constant by dispersive Fourier spectrometry.

Foreword

SPECIAL ISSUE ON THE PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON
SUBMILLIMETER WAVES AND THEIR APPLICATIONS

A REVOLUTION in submillimeter wave techniques has taken place during the past ten years. Prior to the 1970's there was essentially no engineering interest in the development of this range of the spectrum. A small, but significant, amount of work was done on the spectroscopy of molecular gases, semiconductors, and antiferromagnetic insulators by optical engineers who used a mercury vapor source, grating dispersion, and a Golay cell detector. A few of these instruments are still used but most optical scientists now prefer Fourier transform spectroscopy which came into general use during the past ten years. This rapid growth of Fourier transform spectroscopy was made possible by the ready availability of large scale digital computers, the development of the rapidly converging fast Fourier transform, the availability of commercial Fourier spectrometers, and to a lesser extent, the development of sensitive semiconductor bolometers. The newest installations of Fourier equipment contain their own minicomputers providing real-time display of spectra.

The microwave engineers approached the submillimeter gap from the low frequency side by scaling down their cavity resonator sources or by using high harmonics of magnetrons and crystals. The French microwave engineers use carcinotrons at frequencies as high as 1000 GHz and the Russian scientists use backward-wave tubes in the range of about 50-1000 GHz. Many Japanese and European scientists have preferred to use the water-vapor and hydrogen-cyanide lasers which provide considerably more power in several CW monochromatic emission lines. Their work is reminiscent of the efforts of early microwave engineers who had only a few frequencies available from their klystrons. The North Americans have tended re-

cently to favor the optically pumped lasers as described by Chang in the first paper because they provide additional emission frequencies with less noise and higher power.

Laser-pumped tunable sources of radiation have been pursued by several groups so vigorously that there are at least four different systems that provide useful power that can be tuned over a useful submillimeter range.

Among the emerging applications of submillimeter waves is the measurement and study of cosmic and atmospheric phenomena and the interaction of submillimeter radiation with plasmas. Electron plasma studies have been revitalized by the renewed interest in thermonuclear plasmas and the recent construction of Tokamak machines for the containment of high-density plasmas. Submillimeter waves are more useful for high-density plasma diagnostics than microwaves or millimeter waves.

Several semiconductor and antiferromagnetic phenomena can be studied only at submillimeter wavelengths. These include electron-phonon coupling, shallow bound states in semiconductors, energy band measurements in low-mobility semiconductors, antiferromagnetic resonance, and localized spin-wave modes.

This revolution in submillimeter and far infrared techniques and applications marks the end of the scientific development of the electromagnetic spectrum that began with the statement of Maxwell's equations 110 years ago. This last unused region of the spectrum will provide submillimeter wave engineers with fewer and fewer significant challenges of ever decreasing interest if the pattern of development follows that of the other discrete ranges of the spectrum. At this point in time, however, there is the familiar excitement of an emerging technology that all

Jun 5-7, 1974 Atlanta

of us felt during our three-day gathering in Atlanta. It is easy to predict that this excitement will be rekindled at the Zürich Conference on Infrared Physics that has been organized by Professor Kneubühl for August 11-15, 1975. The Second International Conference on Submillimeter Waves will have a summer-school style organized by the "Atlanta Committee" somewhere in North America, December 6-10, 1976, and the third will be held in England in 1978.

All of the papers presented at the Atlanta Conference appear in this issue of this TRANSACTIONS, although many appear only by title and abstract.

In future conferences, we hope to provide space for longer papers. A short version of all the papers presented at the Atlanta meeting has been published in the Digest of Technical Papers where references to the general literature may be found. The Digest is available from the Institute of Electrical and Electronics Engineers, IEEE Order Department, 445 Hoes Lane, Piscataway, N.J., U.S.A. 08854, by asking for Publication Number 74 CH 0836-5 (MTT). The price is \$15. Extra copies of this issue of this TRANSACTIONS are also available from the IEEE for \$6.

The members of the organizing committee are grateful to our friends on the Administrative Committee of the IEEE Society on Microwave Theory and Techniques who sponsored this conference. We wish particularly to thank Robert A. Rivers and John B. Horton, who were Presidents of the IEEE Society on Microwave Theory and Tech-

niques, for their active and enthusiastic support and their friendly advice. I am quite sure that the members of the Program Committee and the authors of papers would be very grateful, as I am, to Elisabeth P. Taylor, if they knew that it was her dedicated work that made the program and the manuscripts so easily manageable. Finally, we wish to thank the members of the Advisory Committees and others whose names appear in the following, for their unselfish contributions.

Conference Committee: James J. Gallagher, General Chairman; Kenneth J. Button, Program Chairman; J. W. Dees, Executive Secretary; R. G. Shackleford, Treasurer; S. Perkowitz, Publications; A. McSweeney, Finance; Susan Harden, Secretary.

International Advisory Committee: C. C. Bradley, George Chantry, L. Genzel, A. Händi, Fritz Kneubühl, W. Low, A. M. Prokhorov, Paul L. Richards, K. Shimoda, John B. Horton, Robert A. Rivers, G. P. Rodriguez, Peter E. Tannenwald, Jesse J. Taub.

Program Committee: R. L. Aggarwal, Frank Arams, Thomas J. Bridges, Daniel R. Cohn, Paul D. Coleman, Vincent J. Corcoran, Kenneth M. Evenson, Harold R. Fetterman, Marvin M. Litvak, Ernest V. Loewenstein, A. A. Manenkov, Bruce McCombe, Robert J. Wagner, Elisabeth P. Taylor, Secretary.

KENNETH J. BUTTON, *Guest Editor*